等离子体谐振腔对二硫化钼的荧光增强效应*

孟凡1)† 胡劲华2) 王辉1) 邹戈胤3) 崔建功4) 赵乐5)‡

(石家庄铁道大学信息科学与技术学院,石家庄 050043)
 (河北工程大学信息与电气工程学院,邯郸 056038)

3) (石家庄邮电职业技术学院培训部, 石家庄 050021)

4) (中北大学电子测试技术国家重点实验室,太原 030051)

5) (河北医科大学第四医院消化内科,石家庄 050011)

(2019年7月21日收到; 2019年9月18日收到修改稿)

二硫化钼 (MoS₂) 作为一种层状过渡金属硫族化合物, 是未来光子学与光电子学领域的重要组成材料. 本文设计实现了 MoS₂ 与谐振腔耦合系统, 将蝴蝶结型等离子体谐振腔的谐振模式与单层 MoS₂光致发光 (PL) 谱相耦合, 得到该条件下最佳 PL 强度增强效果. 通过理论模型与实验数据的分析, 利用珀塞尔效应对 自发辐射速率进行控制, 得到了峰值为 9.5 倍、带宽为 100 nm 的宽带增强谱. 同时, 增强的 PL 强度随激发光 和探测光的偏振角度满足余弦函数规律的依赖特性, 证明了谐振模式来自谐振腔中的电场偶极子. 该研究提 供了在单层 MoS₂ 与等离子体谐振腔耦合结构中研究光与物质相互作用增强的可行性, 为今后基于 MoS₂ 光 子学器件的发射与探测效率提升开辟出一条新途径.

关键词:二硫化钼,光致发光,等离子体谐振腔,珀塞尔效应 PACS: 78.55.-m, 78.66.-w, 78.67.-n, 78.70.-g

DOI: 10.7498/aps.68.20191121

1 引 言

作为层状过渡金属硫化物的典型代表, 二硫化 钼 (MoS₂)具有非常优异的电学和光学特性, 近年 来一直得到人们的重点关注^[1-7]. MoS₂材料的能 带结构会随着其层数的变化而改变, 当层数从多层 减少到单层时, MoS₂将由间接带隙半导体变成禁 带宽度为 1.8 eV 的直接带隙半导体^[8]. 与块状 MoS₂晶体材料相比, 单层 MoS₂的光致发光 (PL) 效率提升了 10⁴倍^[9,10], 这为二维材料在光子器件 和光电子器件应用方面开辟了新的天地. 截至目 前, 已有不少关于 MoS₂的开拓性研究报道, 如基 于 MoS₂ 的光电探测器可实现 880 A/W 的超高光 电响应度^[11],利用单层 MoS₂ 直接跃迁的电致发光 器件^[12] 以及 MoS₂ 纳米薄片中超快非线性饱和吸 收效应^[13] 等.虽然单层 MoS₂ 的量子产量已有较 大提升,但由于其 PL 效率由非辐射复合速率 $1/\tau_{nr}$ (远大于自发辐射速率, $\tau_{nr} \approx 100$ ps)所主导,使 得整体效率仅为 10^{-2} 量级^[9].在光与微纳结构谐振 腔相互作用的研究中,后者能够克服光衍射带来的 探测极限,通过其谐振效应对光场进行高效限制并 控制其中多项参数^[14],从增强光场密度角度来看 极大地增强了光与物质的相互作用.甘雪涛等^[15] 通过将单层 MoS₂与高品质因数 (*Q*~320)的光子 晶体谐振腔 (PPC) 耦合,利用珀塞尔效应得到了

^{*} 河北省优秀青年科学基金 (批准号: F2018210100)、河北高等学校青年拔尖人才项目 (批准号: BJ2018003)、河北省自然科学基金 (批准号: F2017402068) 和山西省自然科学基金 (批准号: 201801D221198) 资助的课题.

[†] 通信作者. E-mail: mengfan3426@126.com

[‡] 通信作者. E-mail: daisyvivi111@sina.com

^{© 2019} 中国物理学会 Chinese Physical Society

峰值为 5.3 倍的 PL 增强结果, 但增益带宽仅为 2—3 nm. 吴三丰等^[16]将单层二硒化钨与 PPC 进 行耦合, 除了得到珀塞尔因数为 60 的窄带 PL 增 强效果外, 还通过 PPC 结构参数的设计实现了对 发射光子极性和方位角的重新分配. 在 PL 宽谱增 强方面, Moerner 研究组^[17]利用溶于聚甲基丙烯 酸甲酯中的发光具有光致漂白效应的荧光分子 (TPQDI) 覆盖在蝴蝶结型等离子体谐振腔上, 得 到了高达 1340 倍的 PL 增强效果.

本文将化学气相沉积 (CVD) 生长的单层 MoS₂ 与基于银薄膜的蝴蝶结型纳米谐振腔相互集成, 前 者的辐射荧光通过倏逝波效应与后者谐振模式进 行耦合, 光场以超过衍射极限的程度被压缩时其局 部态密度也会随之改变^[18,19]. 通过对单层 MoS₂ 中 激子自发辐射速率的有效控制, 该珀塞尔效应能够 实现峰值为 9.5 倍的 PL 增强效果. 随着激发光 (探测光) 的偏振方向与谐振腔长轴方向夹角的变 化, 各点 PL 强度值具有清晰而强烈的偏振依赖性, 场强的空间分布与不同激发条件下的谐振腔模式 分别对应, 证明了该增强结果来源于谐振腔中电场 偶极子发射效应.

2 光与物质耦合系统模型

2.1 理论模型

为了定量分析单层 MoS₂ 自发辐射速率的增 强效果, 我们建立了 MoS₂ 与谐振腔耦合的荧光增 强系统 (PES) 模型. 假设 MoS₂ 是大量激射偶极子 发射体的集合, 且激子复合速率为辐射复合速率与 非辐射复合速率之和, 即 $\Gamma = \Gamma_{nr} + \Gamma_{r}$. 在实验测量 中, 由于谐振模式的 PL 强度与激发光功率呈线性 关系, 说明自发辐射速率还未达到 MoS₂ 的饱和程 度. MoS₂ 的辐射功率 $P = P_{in}A\Gamma_{r}/(\Gamma_{nr} + \Gamma_{r})$ 成正 比, 这里 P_{in} 为激发光功率, A 为 MoS₂ 在激发光 波长处的吸收率. 由于 $\Gamma_{nr} \gg \Gamma_{r}$ 且光学探测角度有 限, 在 PES 中可近似有 $P \propto \eta \Gamma_{r}/\Gamma_{nr}, \eta$ 为 PL 辐射 的探测效率. 将激子视为衬底上 MoS₂ 中的大量发 射体, 本征自发辐射速率 $\Gamma_{0}(\lambda) d\lambda$ 对应到光谱 λ 到 $\lambda + d\lambda$ 后, 修正的自发辐射分布 $\Gamma(\lambda) d\lambda$ 为

$$\Gamma\left(\lambda\right) \mathrm{d}\lambda = \Gamma_0\left(\lambda\right) \mathrm{d}\lambda \left[F_{\mathrm{re}}L\left(\lambda\right)\left|\psi\right|^2 + F_n\right],\qquad(1)$$

其中,
$$L(\lambda) = 1 / \left[1 + 4Q^2 \left(\frac{\lambda}{\lambda_{\text{re}}} - 1 \right)^2 \right]$$
为谐振模

式的洛伦兹拟合谱线, Q为谐振模式的品质因数, λ_{re} 为中心谐振波长, $\psi = E \cdot \mu / (|E_{max}| |\mu|)$ 为偶极 子发射体 μ 与谐振光场 E的空间角度重叠因子, F_n 是除谐振模式以外其他因素导致的辐射抑制因数. 当偶极子发射体处于谐振态且与光场空间方向 一致时, 可得 $F_{re} = \frac{3}{4\pi^2} \frac{Q}{V_{mod}} \left(\frac{\lambda_{re}}{n}\right)^3$ 为最大自发 辐射增强 (珀塞尔)系数, V_{mod} 为有效模式体积, n为银材料的折射率.

因此, 谐振腔增强辐射谱 $I_{re}(\lambda)$ 在不同偏振角 度 ϕ 的变化规律, 可以由同时考虑修正的自发辐射 速率、谐振模式探测效率以及泄露模式效率的 PES 进行分析. 通过将 (1) 式在空间上和平面内发 射体分布密度 $\rho(r, \lambda, \mu)$ 进行积分可得到

$$I_{\Phi}(\lambda) = \Gamma_0(\lambda) \int d\mu d^2 r [\eta_{\rm re} F_{\rm re} L(\lambda) |\psi|^2 \sin(\phi)$$

+ $\eta_n F_n]\rho(r, \lambda, \mu),$ (2)

其中, η_{re}和η_n分别是谐振模式和非谐振模式的辐射 PL 与探测装置的耦合效率.由于等离子体谐振 腔的模式具有偏振依赖性,不同激发角度下 PL 谱 的增强倍数为

$$\frac{I_{\varPhi}(\lambda)}{I_n(\lambda)} = \frac{\eta_{\rm re}}{\eta_n} \frac{\int \mathrm{d}\mu \mathrm{d}^2 r F_{\rm re} L(\lambda) |\psi|^2 \rho(r,\lambda,\mu)}{\int \mathrm{d}\mu \mathrm{d}^2 r F_n \rho(r,\lambda,\mu)} + 1. \quad (3)$$

2.2 实验

单层 MoS₂ 与谐振腔耦合系统 (图 1(a) 所示) 采用 CMOS 工艺流程制作. 金属银层由电子束蒸 镀过程沉积到石英衬底上表面,通过聚焦离子束 (FIB) 技术刻蚀成蝴蝶结型等离子体谐振腔阵列 即基于银层的刻蚀图案. 随后, 利用原子层沉积法 在银层上表面生长一层 3 nm 厚度的二氧化硅隔 离层,用于防止单层 MoS₂ 中光生载流子转移到下 面的银层抵消荧光增强效果. MoS,材料通过 CVD 法在隔离层上表面生长, 再经过拉曼光谱法 和激射荧光光谱法验证为单层后转移到隔离层表 面. 为得到最佳结构参数, 制备的谐振腔长度分别 从 L = 180, 220, 260, 300, 340, 380 和 420 nm 等 梯度变化,如图1(b)所示为研究对象的扫描电子 显微图像,长宽比约为2:1.通过电子倍增电荷耦 合器件 (EMCCD) 预实验扫描, 选取与单层 MoS_2 荧光峰重叠效果最好的进行实验测量,谐振腔尺寸

图 1 MoS₂与谐振腔耦合系统(样品)的(a)结构示意图,(b)扫描电子显微镜(SEM)图像和(c)光学图像 Fig. 1. The MoS₂-cavity coupled system's (a) structural diagram, (b) scanning electron microscope image, and (c) optical image.

约为 340 nm × 180 nm. MoS_2 在制备过程中的不 均匀性导致出现了一些裂纹 (条形纹理), 如图 1(c) 所示.

3 实验系统及测量

为了研究金属等离子体谐振腔对 MoS₂的 PL增强效应,采用如图 2(a)所示的共焦显微系统 进行测量.波长为 532 nm 的单色激发光通过激发 端的线偏振器和半波片组合,使其能够以任意角度 对 MoS₂进行激发.双色镜 (反射波长范围在 596 nm 以上的光而透射 596 nm 以下的光)对激 发光透射并通过 100 × 的显微物镜 (*NA* = 0.9) 聚 焦到样品上,入射功率值为 150 μW、光斑直径约 为 400 nm.样品受激发后,中心波长在 670 nm 附 近的宽谱增强 PL 和小部分激发光将原路返回.由 于 PL 强度较微弱,残留的激发光不能忽略,双色 镜使混合光通过 532 nm 的陷波滤光片后几乎只 剩下 PL, 最终通过探测端的半波片和线偏振器组 合选择不同角度的 PL 进行探测. 本系统采用了三 种探测装置: 1) 商用光谱仪测量单层 MoS₂ 材料激 射前后的 PL 谱; 2) EMCCD 用来扫描谐振腔阵列 并寻找其中最优结构参数的谐振腔; 3) 雪崩光电 二极管 (APD) 测量 PL 增强前后的光子数. 图 2(b) 所示为 EMCCD 扫描 (空间步长为 30 nm) 谐振腔 阵列得到的 PL 强度分布图: 叉形区域是没有分布 MoS₂的区域,光子数为背景噪声;蓝色均匀区域 为连续的单层 MoS2 区域, 光子数为 PL 增强前的 强度;在中央区域可以看到明显的谐振腔阵列增强 效果 (也为蝴蝶结型), 光子数为连续 MoS₂ 区域的 7—9倍.由于结构参数的梯度分布和制作工艺的 不完美性,每个金属等离子体谐振腔增强效果都不 一致, 选择 PL 增强效果最好的谐振腔进行研究.

图 2 (a) 研究单层 MoS_2 PL 增强效应的共焦显微系统装置图; (b) EMCCD 得到的样品远场 PL 强度扫描图

Fig. 2. (a) The con-focal microscope setup of measuring PL enhancement of monolayer MoS_2 ; (b) the sample's far-field PL intensity image of EMCCD.

4 讨 论

已有报道对蝴蝶结型等离子体谐振腔的谐振 模式进行了仿真,采用时域有限差分法 (FDTD) 得到不同激发条件下的电磁场分布^[20]. 我们在实验中也得到了一致的规律: 当 MoS₂ 辐射光 (波长处于谐振腔传输谱内)的偏振方向与谐振腔长轴平行 (如图 3(a) 所示, $\Phi = 0^{\circ}$)时, 绝大部分光场能

图 3 MoS₂辐射光偏振与谐振腔长轴方向在不同夹角 (a) $\Phi = 0^{\circ} \pi$ (b) $\Phi = 90^{\circ}$ 下得到的 PL 增强扫描图 Fig. 3. The APD scanning images of MoS₂ PL enhancement when the angles between the excitation light and resonator's long-axis are (a) $\Phi = 0^{\circ}$ and (b) $\Phi = 90^{\circ}$.

量 (PL) 位于几十纳米量级的间隙区域 (中央区 域), 而两侧区域只有很少部分, 为谐振模式 1; 当 辐射光偏振方向与长轴方向垂直 (如图 3(b) 所示, $\Phi = 90^{\circ}$)时,会在两侧区域产生相对均匀分布的 光场能量 (PL), 而位于中央区域的能量非常少, 为谐振模式 2. 由图 3 可知,模式 2 中更多激子 (谐 振区域面积大)产生自发辐射, APD 的空间积分 具有更多光子数.虽然模式1中光子数较少,但大 多数光子都集中在更小的有效模式体积 V_{mod} (≈ $0.69(\lambda/n)^3$)中,因而具有更高密度的局部场, PL 增强效果更加明显. 由于单层 MoS₂ 与谐振腔 的耦合作用,后者平面内的辐射通道被非谐振模式 所抑制,垂直方向的自发辐射通道被谐振模式重新 分布后由测量装置所接收. 在这两种情况下, 谐振 模式将面内激子的辐射速率进行抑制,有效提升垂 直方向的自发辐射速率,进而增强了单层 MoS2 的 PL 强度.

基于其结构特点, 蝴蝶结形等离子体谐振腔具 有很强的偏振依赖特性, 因而对 PL 增强效果也有 类似的偏振规律. 对于单层二硫化钼与衬底组成的 系统, 由于激子分布的随机性, 激发得到的 PL 强 度值 (光子数) 与激发、探测角度均不相关. 当二硫 化钼与谐振腔耦合时, 先通过激发端 (探测端) 的 线偏振器和半波片组合进行激发 (探测) 光角度固 定, 然后将另一端的半波片和线偏振器组合进行步 长为 12.5°的角度扫描并使用 APD 读取相应谐振 模式和激发 (探测) 角度下的峰值光子数, 得到如 图 4(a) 和图 4(b) 所示的光子数变化规律 (散点所 示), 这些曲线能够通过 $a\cos^2\theta + b$ 公式 (虚线所 示) 很好地拟合.

通过光子数空间扫描和偏振特性研究后,可以 确定等离子体谐振腔对单层 MoS,辐射 PL 最佳的 增强条件. 图 5(a) 所示为三种不同情形下利用光 谱仪得到的 PL谱线:本征谱 (单层 MoS₂的 PL谱, 蓝色实线), $\Phi_{ex} = \Phi_{co} = 0^{\circ}$ (模式1的PL 增强谱,绿色实线)和 $\Phi_{ex} = \Phi_{co} = 90^{\circ}$ (模式2的 PL 增强谱, 红色实线). 由于模式 1 有效模式体积 较小,其对单层 MoS₂ PL 强度的增强效果远大于 模式 2, 增强倍数的峰值达到 9.5. 通过对比三条谱 线,谐振腔的中心谐振波长 ($\sim 670 \text{ nm}$)比 MoS₂ PL 中心波长 (~680 nm) 略短, 同时 MoS₂ PL 增 强谱线的整体上移说明谐振模式具有很宽的 FWHM (~100 nm). 为标定谐振腔的模式 1, 搭建 了传输谱测量系统,利用超连续谱光源 (NKT SuperK Extreme) 通过线偏振器和半波片组合、 100 × 显微物镜 (NA = 0.9) 将光信号聚焦到谐振 腔中央区域;在样品背面还有一个 60 × 油浸物镜 (Olympus, Japan) 与前方物镜准直在一条线上,

图 4 不同激发光 (探测光) 偏振角度下, 探测光 (激发光) 的光子数变化规律曲线 (a) $\Phi_{ex(co)} = 0^{\circ}$; (b) $\Phi_{ex(co)} = 90^{\circ}$ Fig. 4. The photon counts of APD at different angle combinations of the excitation and detection lights: (a) $\Phi_{ex(co)} = 0^{\circ}$; (b) $\Phi_{ex(co)} = 90^{\circ}$.

图 5 (a) 单层 MoS_2 在不同情形下的 PL 谱线; (b) 等离子体谐振腔的传输谱; (c) 实验中得到的最大 PL 增强倍数曲线 Fig. 5. (a) The PL spectra of monolayer MoS_2 in different cases; (b) the transmission spectrum of the plasmonic resonator; (c) the PL enhancement of the MoS_2 -cavity coupled system.

两者焦点相互重合. 在系统中, 样品表面的反射光 沿入射光路返回, 探测物镜可收集其数值孔径内、 散射在 4π 立体角中的近场谐振信号, 这样光谱仪 得到的传输谱具有很高的信噪比 (如图 5(b) 所示, 内置图为样品测试局部图). 谐振模式的中心波长 λ_{re} 为 667 nm, 品质因数 Q仅为 6.7, 得到相应的 珀塞尔因数为 0.74. 根据图 5(a) 中的 PL 谱线, 可 以计算该谐振腔最大 PL 增强倍数曲线, 如图 5(c) 所示. 在 PES 模型中, 通过谐振腔模式中谐振和失 谐的偶极子远场辐射在物镜数值孔径内的积分, 得 到该共焦显微系统中模式 1 的耦合效率 η_{re}/η_n 约为 80%; 在模式激发区域, 仿真求得($|E||\mu| / |E_{max}||\mu|$)² 的空间积分为 0.8—0.9. 另外, 由于偶极子发射体 在单层 MoS₂中的指向随机分布, 与谐振腔场强的 角度积分为 0.5. 取 $\Phi_{ex/co} = 0^{\circ}$ 情况下峰值增强倍 数为 9.5 时, 得到 F_n 约为 0.03. 如图 5(c) 所示, PL 增强的理论曲线 (虚线所示)与实验数据 (散点所 示) 达到了很好的拟合结果. 两者的差异主要来自 以下原因: 1) 采用洛伦兹型曲线拟合谐振模式的 误差; 2) 样品工艺制作时引入的不完美性; 3) 建立 理论模型时假设的近似条件等. 与图 5(a) 中的 PL 增强谱相比, 谐振腔对二硫化钼中激子自发辐 射速率和方向的进行了人为修正, 使得 PL 谱线形 状得到重塑.

实际上, MoS_2 的 PL 增强因数 η 等于激发光 增强因数 η_1 与辐射 PL 增强因数 η_2 的乘积. 第一, η 是由于激发光频率处于谐振腔谐振模式内,可以 提高光场密度激发更多的激子;第二, 72 是由于辐 射的激子频率处于谐振模式内,有更多的相同频率 的激子被激发出来,两种因素的综合效果实现了对 自发辐射速率的调控. 受到客观条件限制, 实验中 的激发光波长并没有位于谐振腔的传输谱中,因 而 PL 增强因数没有达到最佳结果. 以往报道中类 似的蝴蝶结型等离子谐振腔虽然能够达到 $\eta =$ 1340 倍的总体增强效果^[17], 但其 η₂ 仅为 9.32, 比 我们的值略低. 如果采用波长范围在 600-630 nm 之间的激发光源 (与谐振中心波长接近,同时光子 能量大于单层 MoS₂的能级差), 将得到更高的激 发光增强因数 η_1 , 使得光与物质相互作用增强的效 果极大提升.

5 结 论

证实了通过将单层 MoS₂ 与等离子体谐振腔 耦合,谐振时可以较大程度地增强其内部量子跃迁 效率.实验测量和理论计算揭示了 MoS₂ 自发辐射 速率最大增强倍数为 9.5、FWHM 为 100 nm 的宽 带增强谱线,并实现了两者理想的吻合结果.增强 的 PL 强度还满足 acos²θ + b 规律的偏振特性,证 明了谐振模式来自谐振腔中的电场偶极子和理论 假设的合理性.如果进一步优化激发光波长和谐振 腔结构参数,预计可以达到更高倍数的增强效果. 单层 MoS₂ 中谐振腔增强的光与物质耦合作用将 固态腔体电动力学扩展到原子层厚度二维材料中, 对非线性基础研究和光子学器件应用都具有重要 价值.

参考文献

- Wang C C, Liu X S, Wang Z Y, Zhao M, He H, Zou J Y 2018 Chin. Phys. B 27 118106
- [2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nature Nanotech. 7 699
- [3] Li X, He D W, Wang Y S, Hu Y, Zhao X, Fu C, Wu J Y 2018 Chin. Phys. B 27 056104
- [4] Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]
- [5] Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934
- [6] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nature Chem. 5 263
- [7] Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 *Acta Phys. Sin.* 65 018102 (in Chinese)
 [顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩震 2016 物理学报 65 018102]
- [8] Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Chi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese) [魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 物理学报 63 217802]
- [9] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
- [10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
- [11] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497
- [12] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416
- [13] Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260
- [14] Emmanuel F, Samuel G 2008 J. Phys. D: Appl. Phys. 41 013001
- [15] Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A, Trusheim M, Hatami F, Heinz T, Hone J, Englund D 2013 *Appl. Phys. Lett.* **103** 181119
- [16] Wu S F, Buckley S, Jones A M, Ross J S, Ghimire N J, Yan J Q, Mandrus D G, Yao W, Hatami F, Vuckovic J, Majumdar A, Xu X D 2014 2D Mater. 1 011001
- [17] Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mullen K, Moerner W E 2009 Nature Photon. 3 654
- [18] Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961
- [19] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 *Nano Lett.* 14 3185
- [20] Lu G W, Li W Q, Zhang T Y, Yue S, Liu J, Hou L, Li Z, Gong Q H 2012 ACS Nano 6 1438

Fluorescence enhancement of monolayer MoS_2 in plasmonic resonator^{*}

Cui Jian-Gong⁴) Zhao Yue^{5)‡}

1) (School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China)

2) (School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China)

3) (Training Department, Shijiazhuang Post and Telecommunication Technical College, Shijiazhuang 050021, China)

4) (State Key Laboratory of Dynamics Testing Technology, North University of China, Taiyuan 030051, China)

5) (Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China) (Received 21 July 2019; revised manuscript received 18 September 2019)

Abstract

Molybdenum disulfide (MoS_2), as a layered transition metal chalcogenide, plays an important role in fields of photonics and photoelectronics. Here, a coupled system consisting of monlayer MoS_2 and nano-resonator is designed and implemented. The photoluminescence (PL) spectrum of the MoS_2 is coupled with the resonant mode of plasmonic bowtie resonator, thus achieving an optimal PL enhancement condition. Based on the analysis of theoretical model and experimental data, the spontaneous emission rate can be controlled by the Purcell effect, and the broadband enhanced spectrum is obtained in which its peak value increases 9.5 times and bandwidth is 100 nm . Meanwhile, the enhanced PL intensity also satisfies the cosine function relation between the polarization angle of the exciting light and that of the detecting light, which proves that the resonance mode comes from the electric field dipole in the resonator. This study provides the feasibility of studying the enhancement of light-matter interaction in an MoS_2 -plasmonic resonator coupled structure, which opens up a new route to improving the emission and detection efficiency of MoS_2 -based photonic devices in future.

Keywords: MoS₂, photoluminescence, plasmonic resonator, Purcell effect

PACS: 78.55.-m, 78.66.-w, 78.67.-n, 78.70.-g

DOI: 10.7498/aps.68.20191121

^{*} Project supported by the Science Foundation for the Excellent Youth Scholars of Hebei Province, China (Grant No. F2018210100), the Top Young Talents in Hebei Colleges and Universities, China (Grant No. BJ2018003), the Natural Science Foundation of Hebei Province, China (Grant No. F2017402068), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D221198).

[†] Corresponding author. E-mail: mengfan3426@126.com

[‡] Corresponding author. E-mail: daisyvivi111@sina.com